
Copyright Vance Hilderman Page 1 of 9
vance.hilderman@afuzion.com www.afuzion.com

 DO-178C BEST PRACTICES FOR ENGINEERS AND MANAGERS

DO-178C Best Practices: Introduction.

Practice: we’ve all engaged in it: piano, math, golf, flying … Usually

practice involves a modicum of coaching, self-help, and repetition. In

avionics development however, there is little time for “practice”;

instead, everything counts. And the result has little margin for error:

schedules, budgets, and particularly safety are all on the line. How

then can “practice” be reconciled with “avionics development”? The

best answer is to understand the breadth of worldwide development

and glean the best knowledge and solutions from the aviation

ecosystem. Welcome to DO-178C Best Practices.

In flying, there are tradeoffs between payload, range, speed, and

costs. The vast breadth of aircraft types for sale today belies the

simple fact that many persons prioritize these tradeoffs differently.

However, the variations in avionics software development practices

are much more constrained: everyone wants to minimize the following

attributes:

✓ Cost

✓ Schedule

✓ Risk

✓ Defects

✓ Re-use Difficulty

✓ Certification Roadblocks

The following pages provide the DO-178C Best Practices which can

minimize all six of these important attributes in your development.

AUTHOR

VANCE HILDERMAN

➢ BSEE, MSEE, MBA
➢ Founder of two of the

world’s largest avionics
development services
companies

➢ Developer of the world’s
first training in DO-178
and trainer of over 7,000
engineers in 30+
countries in DO-178

➢ Primary author of the
world’s first, and best-
selling, book on DO-178
and DO-254 (available at
most major bookstores
worldwide)

➢

mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

2

DO-178C Best Practices: Prelude

Certain good avionics software development practices are self-evident. Similar to improving

human health, educated persons know that improved diet, exercise, sleep, and stress relief are all

“best practices”. For software, the obvious good practices include utilizing defect prevention,

experienced developers, automated testing, and fewer changes. This paper isn’t about the

obvious, as it is assumed the reader is educated by virtue of making it to this page. Instead, the

DO-178C Best Practices identified herein are subtler and considerably “less practiced”.

The following figure summarizes the Top 10 not-always-obvious DO-178C Best Practices:

Top 10 Not-Always-Obvious DO-178C Best Practices

10. Technical Training Workshops

9. Parallel Traceabilty/Transition Audits

8. Advanced Performance Testing

7. Automated Design Rule Checker

6. Automated Regression & CBT

5. Fewer, but Better, Reviewers

4. Model Framework Templates

3. Implement Testing Standards

2. Parallel Test Case Definition

1. Improved LLR Detail

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

3

1. Improved LLR Detail

Requirements are the foundation to good engineering. Detailed requirements are the foundation
to great engineering.”

Smarter researchers than this author long ago proved that most software defects are due to weak

requirements. In the book Mythical Man Month, Brooks opined that assumptions were a leading

cause of software defects. DO-178C was intentionally strengthened over its predecessor DO-

178B to ensure acceptable requirements via 178C’s mandate to trace structural coverage analysis

to requirements-based tests (RBT). Remember: DO-178C doesn’t provide strict requirements

standards, but for DAL A, B, and C, the developer must. Those standards should define the

scope and detail associated with High-Level Requirements (HLR’s) and Low-Level Requirements

(LLRs). Ideally the Requirements Standard will include examples of HLR’s versus LLR’s.

Requirements review checklists should likewise contain ample criteria for evaluating the level of

detail within low-level requirements.

2. Parallel Test Case Definition

If a Tester cannot unambiguously understand the meaning of a software requirement, how could
the developer?

DO-178C is agnostic regarding cost and schedule: the developer is freely allowed to be behind

schedule and over budget. While transition criteria must be explicitly defined for all software

engineering phases, it is normal for companies to define their test cases after the software is

written. However, great companies define test cases before code is written. Why? Because it’s

better to prevent errors than detect them during testing. If a Tester cannot unambiguously

understand the meaning of a software requirement, how could the developer? Good companies

verify requirements independently by having the software tester define test case as part of the

requirements review, before any code is written. Requirements ambiguities or incompleteness are

corrected earlier, yielding fewer software defects and expedited testing.

3. Implement Testing Standards

Requirements Standard. Design Standard. Coding Standard. Testing Standard …
Wait, there ISN’T a Testing Standard?!?

DO-178C explicitly requires standards for DAL A, B, and C. Which standards? Requirements,

Design, and Code. Why doesn’t DO-178C require a verification or testing standard? Supposedly

there should be less variation within testing, compared to the preceding lifecycle phases which are

admittedly more variable between companies and projects. No one has ever accused DO-178C of

requiring too few documents; given the traditional waterfall basis (inherited two decades prior from

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

4

DO-178A), ample documents are required already. However, efficient companies recognize that

verification is an expensive and somewhat subjective activity best managed via a Software Test

Standard. Since not formally required, it would not have to be approved or even submitted. What

would such a hypothetical Software Test Standard cover? At a minimum, the following:

✓ Description of RBT to obtain structural coverage;

✓ Details regarding traceability granularity for test procedures and test cases;

✓ Explanations of structural coverage assessment per applicable DAL(s);

✓ Definition of Robustness testing, as applied to requirements and code (per

applicable DALs);

✓ If DAL A, explanations of applicable MCDC and source/binary correlation;

✓ Coupling analysis practices including role of code and design reviews;

✓ Performance based testing criteria; and

✓ Examples of requirements and code, along with recommended associated test

cases.

4. Model Framework Templates

Software modeling will eventually fade away …when software functionality, complexity, and size
all decrease 90%.

There are few safe bets in life, however this author claims continually increasing software

functionality, complexity, and size are all safe bets. As exercise will help manage a high-fat diet,

software modeling better manages tomorrow’s software. However, models and modeling

techniques can vary greatly. Large variation within a project defeats much of the benefit of

modeling, particularly within verification and re-use. Best practice? Use model frameworks and

specify these in the project’s Design Standard. Independently review these frameworks to explicit

criteria (using a checklist), control them, and require their usage.

5. Fewer But Better Reviewers

One Great reviewer is better than many Good reviewers.

If More equaled Better, airplanes would have ten engines …

This author has never seen a ten-engine airplane, but he’s seen many peer review teams with ten

engineers. Why so many reviewers? Was it Optimism? Pragmatism? Perhaps simple Naivety:

human nature is replete with “more is better” examples. However, in the case of software reviews,

one great reviewer is the better choice. One great reviewer is more cost-effective, more

productive, and with proper skill, better. When a rowboat is paddling away from an incoming

torpedo, one oarsman will work harder than many – human nature is human and human reviewers

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

5

perform better when they know they are the sole reviewer. A common gap in DO-178C is weak

reviews; a proper review must be shown to meet DO-178C’s transition criteria, meaning the six

required inputs to, for example, a code review are all fully utilized for all code reviews. Engineers

(the “Reviewer”) must use all these review inputs which must be specified in the Verification Plan

and then Quality Assurance audits affirm that this process is followed by the verification engineer.

(For more information on DO-178C Gap Analysis plus a one-minute video, see here:

http://afuzion.com/gap-analysis/).

6. Automated Regression & CBT

In the non-critical software world, testing is a “great idea”. Purchasing an exotic car or yacht can

also seem like a great idea at acquisition time, as this author has personally experienced.

However, unlike luxury cars and yachts, software testing should not be considered a luxury but

rather a necessity. DO-178C requires a variety of necessary testing, with increased rigor per

increased criticality. The basic types of testing are depicted below:

DO-178C requires regression analysis whereby software updates are assessed for potential

impact to previously tested software with mandatory retest required where potential impact exists.

Over the project life, and absolutely over the product life, more time will be spent on testing than

on development. Many consider software testing to be the largest line-item expense in DO-178C.

Devoting upfront time to develop a test automation framework can provide the single largest

expense reduction ability. And continuous-based testing (CBT), which automatically retests

changes continuously, is the best means to meet regression objectives. Why? By continuously

retesting all software the regression analysis is greatly simplified: just repeat all the tests by

pressing a button. Voilà.

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com
http://afuzion.com/gap-analysis/

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

6

7. Automated Design Rule Checker

On their best days, humans perform satisfactorily when checking software design rules; in the
safety-critical world, not all days are best days.

The safety-critical software world is replete with tools and techniques for performing static code

analysis, automating testing, structural coverage, and model-based design. Wonderfully helpful,

even necessary. However, if an imperfection can be considered a defect, then the

aforementioned activities miss an entire area of defective design. Consider: a leading cause of

software defects is “assumptions”, hence the need for detailed requirements, traceability, coding

standards, etc. However, different humans have different “assumptions” regarding software

design and internal interfaces. These different assumptions yield imperfectly coordinated software

components and these imperfections may mask defects. The remedy? Automated design rule

checkers which help ensure consistent, deterministic interfaces and execution. Combined with the

model framework templates of #4 above, a most powerful combination results.

8. Advanced Performance Testing

Would you want to buy a new car model which has never been tested in aggressive driving
conditions? I live in Los Angeles and Manhattan; me neither.

Interestingly, DO-178C provides very little guidance on performance testing so a common pitfall

ensues: minimal software performance testing. However, thorough performance testing is a

hallmark of quality software and the only means to find certain defects which otherwise are not

detected until potentially catastrophic in-flight failures. Often correcting performance related

software defects entails major architectural changes, which are always time-consuming and

expensive. A better way? Advanced performance testing which fully:

✓ Defines worst-case loads, with worst-case execution times (WCET)
✓ Utilizes continuous maximal rate of change for inputs across all interfaces
✓ Verifies the separate DO-178C-mandated discrete performance requirements
✓ Consider degraded-mode operations where primary inputs are not available

mandating using of more computationally intensive secondary inputs
✓ Utilizes worst-case Parameter Data Items (PDI’s) where each PDI is deliberately

chosen for WCET impact.

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

7

9. Parallel Traceability/Transition Audits

“Why do it right the first time when it’s fun to keeping doing it over and over…” – Anonymous

Where the amateur athlete focuses on the end result, the professional instead focuses upon

optimizing the technique since the end result depends upon that technique. Amateur and

professional software engineers both know minimizing defects is a goal, but the professional

knows that technique matters: in avionics that is best summarized via DO-178C’s traceability and

transition criteria. While the amateur avionics team assesses traceability and transition criteria at

the end, e.g. SOI-4, the experienced team instead deploys proactive SQA and tools to monitor bi-

directional traceability continuously. Emphasize audits of transition criteria early, fix process

shortfalls, and record the audit results. Remember, each type of artifact review constitutes a

“transition”: engineers must follow the defined transition criteria and QA must audit to assess

process conformance. An example of a Software Code Review transition is depicted below:

ensure all the inputs and outputs are perfectly utilized, under CM, and referenced in the results:

10. Technical Training Workshops

Regardless of profession, the ingredients for becoming the “best” include a combination of

1) education, 2) coaching, and 3) practice. Avionics groups employing Best Practices address the

first two ingredients via training. Whether procured internally or externally, the odds of DO-178C

success can be enhanced via technical training. Which training? Best to focus on areas of high

return-on-investment including improved productivity and consistency in:

✓ Requirements writing (emphasize consistent medium granularity for consistency)
✓ Software Testing (emphasize thoroughness, full real-world scenarios which exercise

cross-domain interfaces)
✓ Reviews (emphasize standard, detail, robustness, changes) – identify meaningful

defects.

✓ Auditing (emphasize Transition Criteria process) and finding/fixing actual defects

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

8

For Advanced DO-178C Training information, see: http://afuzion.com/training/

For DO-178C Gap Analysis information & video, see: http://afuzion.com/gap-analysis/

 What is AFuzion? Fun One-Minute Video: https://www.youtube.com/watch?v=RMzLRzcahJE

For DO-178C & DO-254 specific details, procure the book “Avionics Certification: A Complete

Guide To DO-178C & DO-254”, from major bookstores such as Amazon.com. (The author of this

whitepaper is the primary author of that book.) Also, the new book “Avionics Development

Ecosystem” by Vance Hilderman covers the big-picture view of avionics development from safety,

to systems, and through all key regulatory and design aspects for modern avionics development.

See the Afuzion website, www.afuzion.com, for advanced training modules relevant to DO-178C

beginners and experts alike.

AFuzion’s Worldwide Onsite Engineering Footprint - When Safety Is Critical TM:

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com
http://afuzion.com/training/
http://afuzion.com/gap-analysis/
https://www.youtube.com/watch?v=RMzLRzcahJE
http://www.afuzion.com/

DO-178C Best Practices – Vance Hilderman

Copyright Vance Hilderman vance.hilderman@afuzion.com
 www.afuzion.com

9

mailto:vance.hilderman@afuzion.com
mailto:vance.hilderman@afuzion.com

